LENGTH SPECTRUM OF PERIODIC RAYS FOR
BILLIARD FLOW

VESSELIN PETKOV

ABSTRACT. We study for several compact strictly convex disjoint
obstacles the length spectrum £ formed by the lengths of all prim-
itive periodic reflecting rays. We prove the existence of sequences
{4}, {m;} with ¢; € £, m; € N such that the condition (LB)
related to the dynamical zeta function np(s) is satisfied. This con-
dition implies the existence of lower bounds for the number of the
scattering resonances for Dirichlet Laplacian. We construct such
sequences under some separation condition for a small subset of £
corresponding to lengths of the periodic rays with even reflexions.
Our separation condition is weaker than the assumption of expo-
nentially separated length spectrum L. Moreover, we show that
the periodic orbits in the phase space are exponentially separated.

Keywords: billiard flow, periodic reflecting rays, length spectrum,
separation condition

1. INTRODUCTION

Let Dy,...,D, CR% r >3, d > 2, be compact strictly convex dis-
joint obstacles with C'*° smooth boundary and let D = U;:1 D;. We
assume that every D; has non-empty interior and throughout this pa-
per we suppose the following non-eclipse condition

Dy, N convex hull (D; U D;) = 0, (1.1)

for any 1 < 4, j,k < r such that ¢ # k and j # k. Under this condition
all periodic trajectories for the billiard flow ¢; in Q = R®\ D are ordi-
nary reflecting ones without tangential intersections to the boundary
0D. We consider the (non-grazing) billiard flow ¢; (see [CP, Section
2.2], [Pet25b, Section 2] for the definition) and the periodic trajecto-
ries will be called periodic rays. For any periodic ray =, denote by
7(y) > 0 its period, by 7#(y) > 0 its primitive period, and by m(v)
the number of reflections of v at the obstacles. Denote by P the set of
all oriented periodic rays and by P,, v € P, the associated linearised

Poincaré map (see [PS17, Section 2.3] for the definition). Consider the
1
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Dirichlet dynamical zeta function

iy )T
np(s) = Z(—l) ™) dot(id = P)[ 7 Res> 1. (1.2)

yEP

We have the estimates (see for instance [Pet99, Appendix])
Cre"™ < | det(Id — P,)| < 2™ ¥y € P (1.3)

with constants C7; > 0, 0 < p; < po. The series np(s) is absolutely
convergent and not vanishing for sufficiently large Re s.

The zeta function np(s) is important for the analysis of the distri-
bution of the scattering resonances related to the Laplacian in R?\ D
with Dirichlet boundary conditions on dD. For more details we refer to
[[ka90b, Section 1], [CP, Section 1]. It was proved in [CP, Theorem 1
and Theorem 4] that np admits a meromorphic continuation to C with
simple poles and integer residues. There is a conjecture that np can-
not be prolonged as entire function. This conjecture was established
for obstacles with real analytic boundary in [CP, Theorem 3] and for
obstacles with sufficiently small diameters [[ka90b], [Sto09] and C*°
smooth boundary.

The difficulties to examine the analytic singularities of np(s) are
related to the change of signs of the coefficients of the Dirichlet series
(1.2) which may produce cancellations. To study these cancelations,
introduce the distribution

—1)m 7R ()5 (t — 7 i
Folt) = Z;( \)det(Id(fy—) 1£7)|1/2(7)) € S(RY).

Let ¢ € C§°(R;R;) be an even function with supp ¢ C [—1, 1] such
that ¢(t) = 1 for |[t| < 1/2. Let (¢;);en and (m;),en be sequences of
positive numbers such that ¢; — oo, m; — 0o as j — 0o and

1
l; > dy = 2mindist (Dy, Dy,,) > 0, m; > max{l, — .
k#m dO
Define
V;(t) = p(my(t —¢;)), t e R

Definition 1.1. We say that the condition (LB) for Fp(t) is satisfied
if there exist constants ag > 0,7 > 0,¢; > 0 such that for all 7 > o
there exist sequences (¢;), (m;) with ¢; / oo as j — oo and €% <
m; < Pl satisfying

(Fo, )| = cre” ™%, V. (1.4)
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The estimate (1.4) gives exponentially small lower bounds for the
sum of the contributions to (Fp, ;) of the rays v € P with lengths

T(y)e (W, —e ™ lij+e ™), jeN.

If (LB) is satisfied, one obtains two important corollaries:

(i) The modified Lax-Phillips conjecture (MLPC) for scattering res-
onances introduced by Ikawa [[ka90a, page 212] holds. (MLPC) says
that there exists a strip {z € C: 0 < Imz < a} containing an infinite
number of scattering resonances for Dirichlet Laplacian in R?\ D. For
definition of scattering resonances and more precise results the reader
may consult Chapter 5 in [LP89] for d odd and Chapter 4 in [DZ19]).

(ii) The function np(s) has infinite number of poles in some strip
{s € C: Res > ¢} and we have a lower bound of the counting function
of the poles in this strip (see [Pet25b, Theorem 1.1]). In fact, the
result in [Pet25b, Theorem 1.1] has been stated assuming that 7p(s)
cannot be prolonged as an entire function, however the proof works if
sequences (¢;), (m;) satistying (1.4) exist.

On the other hand, Ikawa [[ka90a, Proposition 2.3] showed that if
np(s) cannot be prolonged as entire function, then (LB) holds for Fp.
For obstacles with C*° boundary some conditions which imply that
np(s) cannot be prolonged as entire function have been established in
[Pet25a]. It is interesting to find conditions leading to (LB) which are
not related to the existence of poles of np(s). In this paper we study
this problem.

To construct sequences {¢;},{m;} satisfying (1.4), we must study
the distribution of the periods of periodic rays which has independent
interest. Let II C P be the set of primitive periodic orbits of billiard
flow ¢, and let 11, C II (resp. II_ C II) be the set of periodic rays
with even (resp. odd) number of reflexions. The counting function of
the lengths satisfies

hx
H{yell: 7(v) éx}w%—x, x — +00, (1.5)

with some h > 0 (see for instance, [PP90, Theorem 6.9] for weak-
mixing suspension symbolic flows and [[ka90a], [Mor91] for symbolic
models related to billiard flow). Moreover, we have the asymptotics
(see [Giol0, Theorem 2|)
hx
Hyelle: 7(7) S o}~ o

Introduce the length spectrum £ = {7(v) : v € I1}. We say that L is
exponentially separated if there exists v > 0 such that for all £, ¢/ € L

x — +o00. (1.6)
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we have
10— 0| > evmadblifp £y, (1.7)

From Theorem 1.1 below it follows that if £ is exponentially separated,
then the condition (LB) holds.

We recall some positive and negative results concerning the exponen-
tial separation of length spectrum L. For compact Riemannian mani-
folds M with negative curvatures the metrics for which £ is not expo-
nentially separated are topologically generic and dense for C*, k > 3,
topology (see [DJ16, Theorem 4.1]). On the other hand, Schenck
proved in [Sch20, Theorem 1]) that the set of metrics for which £ is
exponentially separated is dense in C* k > 2, topology and (1.7) holds
with v = v > 0 depending of k£ and the dynamical characteristic.
However, v, — +00 as k — 00, so an approximation with C'* metrics
having exponentially separated length spectrum is an open problem.

For billiard flow ¢; the lengths ¢ € L are rationally independent
for generic obstacles (see [PS17, Theorem 6.2.3]). This result implies
that generically there are gaps between the lengths of different periodic
rays. However the estimates of these gaps and the existence of generic
obstacles with exponentially separated £ seems to be difficult open
problem. In contrast to the metric case mentioned above, for obstacles
we may perturb generically only the boundary and the rays in R?\ D are
always union of linear segments. Consequently, a perturbation of the
boundary is much more restrictive than the perturbations of a metric
studied in [DJ16] and [Sch20]. In section 4 we prove that the periodic
orbits in the phase space are exponentially separated. This is an analog
of Proposition 2 in [Sch20]. This result could be considered as a first
step in the analysis of the existence of exponentially small gaps in £
for generic obstacles.

It is important to remark that in (1.4) are involved the contributions
of the iterated rays with periods in the set {m¢: ¢ € L, m > 2}. Hence
even in the case when L is exponentially separated, for the analysis of
(LB) the terms in (1.4) related to these rays must be estimated. In
this paper we show that a separation condition concerning a very small
subsets of rays v € I, implies (LB). Our main result is the following

Theorem 1.1. Assume that there exist d > 0,0 < p < min{1,h™ '} ¢y >

5— % and a sequence q; /' +00 such that

H{yelli: g—p<r(v) <,
ﬂ
cope s

7(7) = 7(7)| = e OO0} gy e T\ {7} } > 8¢,
J

(1.8)
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Then the condition (LB) is satisfied for Fp.

In Lemma 3.1 we prove that for every small e > 0 and g; > C/(e) we
have the lower bound

tH{velly: gg—p<7() <g;} >(1—e

hqj
while the separation assumption in (1.8) concerns only (’)(%) rays.
For this reason we say that a very small subsets of {y € I, : ¢; —p <
7(7) < ¢;} must be exponentially separated. Moreover, in Theorem
1.1 there is not separation condition for the lengths of v € TI_.

The paper is organised as follows. In Section 2 we obtain upper
and lower bounds of the number of iterated rays with odd and even
number of reflexions. These bounds have independent interest. In
particular, we show that the number of the iterated periodic rays with
lengths in [dy/2, q] is less than the number of primitive periodic rays
with lengths in the same interval. In Section 3 one examines the number
of lengths of periodic rays in small intervals |¢; — p, ¢;] and we prove
Theorem 1.1. The exponential separation of periodic rays in phase
space is studied in Section 4. The idea of the proof is based on the fact
that different periodic rays follows different configurations (see [PS17,
Corollary 2.2.4]). The analysis is technical since we must study some
rays having tangent segments. Finally, in Section 5 we formulate an
open problem for generic obstacles.

2. ESTIMATION OF THE NUMBER OF ITERATED RAYS

Clearly, dy < 7(v), Vy € P. Given ¢ > 1, introduce the counting
functions of the periods of iterated rays
Noaa(q) =t{yell_: 2k+1)7(y) <q, k€N, k> 1},
Neven(q) =t{y€Il: 2kr(y) <q, k€N, k> 1}.
Therefore for g > 4d,
2k + 1)dy < 2k + 1)7(y) < ¢ (2.1)
implies k < [55- —1/2] = py, p; > 1. Thus in the definition of Noga(q)
one has 1 < k < p,, while in Neyen(q) we have 1 <k < [3]. If v € 11,
the number of reflexions m(7) of v is odd and the iterated ray
Vokq1 =y UyU.. Uy
—_———
(2k+1) times

with length (2k 4 1)7(y) will have odd reflexions, too. Hence the con-

-
tribution of Y41 in (1.2) contains a negative factor (—1)@k+1m(),
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Proposition 2.1. Let 0 < € < 1/4 be fized. Then there exists B, > 1
such that for ¢ > B, we have

hq

3es 36 5

1-— 1 :
(1= 05 < Noue) < (145 (2:2)
hq hq
2ez ez
1— Nowen(q) < (1 2.3
(1= 0% < Nawld) < (140 (23)
Proof. Write
q
odd Zﬁ{’}/eﬂ— _2k’+1}
Applying (1.6), there exists C. > dy + 1 such that for z > C, we have
€. eh® €. et
— = < : < < .
(1-De <thyell: s <<+ 95 @4)

We fix C, and choose ¢ > B, > max{5C¢, 4dy}. We have the sum
q
Neaal)= Y #{yel_:r(y) < }

[&L]>2k+1>3 T 2%k+1

+ Z ﬁ{’y ell_: 7(y) <

[C%]<2k+1§% 2k + 1

There exists a constant A, > 1 such that
t{yell_: 7(y) < C} < A
According to (2.1) and (2.4), one deduces

} Ji(q) + J2(q).

hq _ hgq

m(e,q) _ha__ ha
a5 (L éz =)

hg
e 3e3 1 me,q) —1 _2n
<1 __<_ mi6q) =1 >’
<(1+3) 2q+ sd, ¢ "

where

€ €

14— 1/2if 4] —1/2 €N,

m(e.q) = {[g[ci] —1/2]if {[&] - 1/2¢ N,
. ince in J5(q) one has 2k+1 >

1rq

2l
Notice that ¢ > 5C, implies m(e, ¢) > 2. Si
[&]+ 1> &, we obtain

J2(q) < (pg —mle, ) Ae.
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Increasing B, if it is necessary, one arranges for ¢ > B, the inequalities

1 m(eq)—1 20 1 € 4+ 3e

— — ¢ 1 < — + = ,

2q 3dy ~2q¢ 8q(l+¢€/2) 8q(l+¢€/2)
3ee’s

(pq - m(e, Q))Ae S 8hq .

Combining the above estimates for Ji(q), k = 1,2, we conclude that
(1+€)3e
2hq

To obtain the left hand side part of (2.2), we apply (2.4) and taking
into account only the term

tH{y el :7(y) <q/3},

Noaa(q) <

one has X X
3es € 3es
l—€)—<(1—-—=)— <N, .
( €) 2hq ( 2) 2%hq = da(q)
For the proof of (2.3) we apply a similar argument and we omit the
details. 0

3. LENGTH SPECTRUM IN SMALL INTERVALS

To estimate the number of periodic rays in II, with lengths in a
interval (¢ — p, q|, we need the following

Lemma 3.1. Let 0 < p < min{1,h™'} and let 0 < 2= < 28 Then for
q > C(€) we have
hq hq

e pe
(1= - <ty €M g=p < 7(0) < g} < (G=hp) (1)L~ (3.1)
Proof. An application of (1.6) with ¢ > C/(e) yields
e M <ah= (-0 — (149
clly:gq—p<t(y)<qtz2(l—€);7——(1+€)5777—
TETeATe 2hg 2h(q — p)
hq 1
C(1—eS (ehp_&)
2hgehr (1=€)a—p)
Next, choosing C/(¢€) large enough, we obtain

(1+€e)q

I—9—p) (”12—66)@*&)

2¢ ph  p*h? hp
<14+ — <et.
) S 32 ~°

h
<1+ 84 L (14
4 q—p
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This implies
1 E
ehr — _(A+eg > (1 —e 7).
(1=¢)(g—p)
On the other hand, we have the inequality f(y) =1—e 3% —y > 0 for
0<y< 1"%3 because

|
f'(y) >0for0 <y < 0g3'

4log 3
3h

log 3

Therefore p < % < 3

yields 22 <

, hence

and we obtain the left hand side of (3.1).
To establish the upper bound in (3.1), notice that for ¢ > C(€) one
has

S cg—p < < < (1 — — (1 —€)————
tH{yelli: g p_T(v)_q}_(+€)2hq ( E)Qh(q—p)
e 2e 0
=Orag (1= (-) (1 7 5)™):
( +€)2hq 1+e +q—p ¢
Since e™* > 1 — x for x > 0, andlz—fe<%,weobtain
2¢ p _ hp
1—(1— )(1 ) 1o (1-""y1-n
=) (1 ) < 1- =T -
5—hp
)
AT
This completes the proof. O

It is important to note that in the estimates (3.1) one has as factor
the length of the interval [¢ — p, ¢|. Introduce

Nodd(q - P, Q) = Nodd(Q) - Nodd(q - P)-

Clearly, hp < 1 implies hp/3 < 1. Exploiting (2.2), we obtain the
following

Lemma 3.2. Under the assumptions of Lemma 3.1 for ¢ > C, we have

hq hq
3 pes

8q

< Nusla —p.0) < (5~ "Y1+

(1-0%

5 (3.2)
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We apply (2.2) and get

36% 36 % (q—p)

g~ Ve )
Next the proof is a repetition of that of Lemma 3.1 and we omit the
details.

Proof of Theorem 1.1. First we choose 0 < € < 1 small enough to
arrange ¢o > 3(15 — hp + €)(1 4+ €), 2= < . Fix ¢ and consider the
interval

Noda(q) = Noga(q —p) < (1 +€)——

(45— p— e, q; + ] = (p; — p;,p}]
with p; = ¢; + e %% and p; = p + 2e7%%. Taking ¢; large enough,
one gets p; < min{l,h~'}. We apply the upper bound in (3.2) for
Noaa(p; — pj,p;) with g; > C(e) and deduce

hp]-

15 — hp; pj€s
N, < —(1 T 3.3
ad(Pj — pjsDj) < 3 (1+¢€) 8p; (3.3)
We claim that for ¢; > m(e) > C(e) large we have
h—0a;
(15— hp) 2 < (15— hp+ )L (3.4)
j j

This inequality is equivalent to
(1 B 65q1> (1 N 2% )ege—aqj <1+ 2he=%% + 3
Pj p 15 = hp;
For ¢; — +oo the left hand side of the above inequality goes to 1, so
for large ¢; it will be less than 1 + == h <1+ 5 h . This proves the
claim. Consequently, for ¢; > m(e) the estimate (3. 4) implies

h,qj
3

1 pe
Noaa(p; — pj,pj) < (15 —hp+€)(1+€) :
3 8q;

Increasing m(e) and taking into account (1.8), for g; > m(e) we
obtain

Hy el tqi—p <7(7) < g3, |7()—7(Y)] > e COTON vy € I\ {4} }

hqj hqj
cope s 1 pe s
> —(15—h 1 > N, = i, D).
= T8¢ 3< pte)(l+e) 8¢, = dd(Pj = P, P;)

This means that the number of rays v € II, with ¢; —p < 7(y) < ¢;
such that the intervals

Jsi(7) = (T(7) = €729, 7(y) + e7°%)
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contain only one 7(y) with v € II is greater than Nyqi(p; — pj, p;)-
Hence there exists v; € 1 with ¢; — p < 7(7;) < ¢; such that Js ;(v;)
does not contain the lengths of periodic rays v/ € P \ II having odd
number of reflexions. On the other hand, some lengths of iterated rays
with even number of reflexions could be in the interval Js ;(7;).

We choose ¢; = 7(v;), 8 =0, m; = €. Then in the interval L; =
(¢; — mj_l,ﬁj + mj_l) we have only lengths of periodic rays with even
number of reflections and ;(¢;) = 1. By using (1.3), we conclude that

(Fo,oy) = D 7H()|det(ld = P)[720;(7(7)) = doe™ 25,

T(v)EL;

This completes the proof of Theorem 1.1.

4. SEPARATION OF PERIODIC ORBITS IN PHASE SPACE

We start with some preparations. Let ch(U) denote the convex hull
of U c R For k =1,...,r, define

ex = dist (ch(U D)), Dk).
k#j

Set

2d,
dy = dist (Dy, D;), do = — > 1.
1 = maxdis (Dg, Dj), dy & =

The condition (1.1) implies €5 # 0, hence 1y > 0.

We recall some notations concerning billiard flow ¢; (see for more
details [CP, Section 2]). Let SR be the unit tangent bundle of R? and
let 7 : SRY — R? be the natural projection. For z € dD;, denote by

n;j(x) the inward unit normal vector to dD; at x pointing into D;. Set

D =j_, Dj and
D = {(x,v) € SR : z € 0D}

Define the grazing set Dy, = T(0D) N D and denote by (.,.) the
scalar product in R?. We say that (z,v) € Typ,R? is incoming (resp.
outgoing) if (v, n;(x)) > 0 (resp. (v,n;(z)) < 0). Introduce

Din = {(z,v) € D : (z,v) is incoming},
Dout = {(z,v) € D : (x,v) is outgoing}.

For (z,v) € Dinjout/e denote by v' € Dgyejinse the image of v by the
reflexion R, with respect to T,(0D) at « € 9D, that is

v =v—2(v,ni(z))ni(z), veS,RY xe€dD;.
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The billiard flow (¢;)sex is a complete flow acting on SR%\ 77(D)
which is defined as follows. For (z,v) € SR?\ 771(D) we set

T4(z,v) = xinf{t > 0: 2+ tv € OD}.

By convention, we have 7. (x,v) = £o0, if the ray z+tv has no common
point with 9D for £t > 0. For (z,v) € (SR?\ 771(D)) U D, we define

¢t<x7v) = ($+tU,U), te {72(,1‘,1}),7’4_(1},’(})],
while for (2,v) € Dinjout, We set

2,0) € Doy, t € 10,74 (x,0)],
Or(z,v) = (z +tv,v) if (@:0) ' 0,7 (z, v)
or (x,v) € Dy, t € [T_(x,v),0],
and
z,v) € Dy, t €10, 7 (x,v)],
G(z,v) = (x+ o) if (@,0) 10,7 (z v)]
or (z,v) € Doy, t € [T_(z,0),0].
Introduce the non-grazing billiard table M as
M=B/~, B=SR\ (n—l(f)) uDg> ,
where (x,v) ~ (y,w) if and only if (z,v) = (y,w) or
r=y€dD and w=1"
The set M is endowed with the quotient topology.
The non-grazing flow ¢, is defined on M as follows. For (z,v) €
(SRI\ 771(D)) U Dy, we set
e[z, 0)]) = @, )], t €]ri(z,v), 7E(, )],
where [z] denotes the equivalence class of z € B for the relation ~, and
75 (z,v) = £inf{t > 0: ¢(z,v) € Dy}

Notice that 7% (z,v) # 0 for (x,v) € Dy, while it is possible to have
78 (z,v) = +oo. The above formula defines a flow on M since each
(z,v) € B has a unique representative in (SR%\ 7~(D)) U Dy,. There-
fore ¢; is continuous, but the flow trajectory of the point (z,v) for
times ¢ ¢ |78 (x,v), 7% (z,v)[ is not defined. The flow ¢, is defined for
all t € R for z in the trapping set K formed by points z € M such that
—78(2) = 7% (2) = +00 and

sup A(z) = —inf A(z) = +oo, when A(z) = {t € R: 7(¢:(2)) € 0D}.

(for more details see [CP, Section 2]). It is easy to see that the condition
(1.1) implies the existence of ¥y € (7/2, ) with the following property:
if three points z,y, 2z belong to 0D;,, 0D;,, OD;,, i1 # ia, ia # i3,
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respectively, the open segments (x, y) and (y, z) have no common points
with D and [z, y] and [y, z] satisfy the reflection law at y, then ¢ > 1)y,
where ¢ € (m/2, ) is the angle between [y, z] and the normal n;,(y) of
0D,, at y. Introduce

Douso = {(2,0) € OD x ST+ (v, n(x)) < cos by < 0}
and define the billiard ball map
B . Dout,O > ($7U) — (y,U)) € 50ut7
where
(y,w) = (z + 7% (z, v)v, Ryv),

and R, : v € S,R? = o' € S,R? is called reflection map. The map
B(xz,v) is defined if 7% (x,v) < 4o00.

Consider a point p = (x,v) € B. Assume that ¢;(p) is reflecting ray
with p > 1 reflexions starting at p € B for t = 0 and going to

i(p) = (ngUOBPORoqu)(p) €Bt>0,p>1,7>00>0 (4.1)

with R o ¢,(p) € Douso,where
R: (y,w) € Di, = (y, Ryw) € Doys.
The map B : Doyt0 — Dout,o is C°° smooth and
|dB||rop)—10D) < Ao

with constant Ag > 1 depending of dy, 1y and the sectional curvatures
of OD (see for instance, [CP, Appendix A]). On the other hand, Ro ¢,

is also C'*° smooth and we have the diagram
B %, B

lRoqﬁr T(ﬁo

BP
Dout,O ? Dout,O

Consequently, d¢; = d¢, o dBP o dR o d¢,.. Setting § = 2log Ag/dy,
one deduces
[dBP| < A = /2 < &,

where ¢t > pdy/2 is the length of v and we obtain the estimate

[dex(p) ||T(é)—>T(é) < Coe™ (4.2)

with Cp > 1, f > 0 independent of p, 7,0 and p. Here ||| is the norm

induced on T'(B) by the standard norm in SR<.
Every periodic reflecting ray « is determined by a configuration

O~ = (il,...,ik),
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where i; € {1,...,r}, with 4y # 4y, i; # ;44 for j = 1,...,k — 1 and
o is such that v has successive reflections on 0D;,,...,0D;, . The
configuration a, is well defined modulo cyclic permutation. We say
that v has type ., and o, has length k. Moreover, according to [PS17,
Corollary 2.2.4], for a fixed configuration ., there exists at most one
periodic ray v in R?\ D.

Given a periodic ray 7 in R?\ lo), define by 74 one of the two possible
lifts

F(t) ={pi(z,2v) e M : 0<t<T1(y), x €7, x & 0D}

on M, where v € S% ! is the direction of v at z. Below we fix a lift
7 = A(t) corresponding to (x,v) and parametrised by the length. We
will say that () follows a configuration «, if w(5(t)) follows a. Set

GI) ={7: n(3) =7y €ll, 7(y) <T}.

A point z € B will be called linearly connected to 7 if there exists
w € 4N B such that 0z + (1 —o)w € B, Yo € [0, 1]. For such points
2z € B define
dist(z,7) = min{||z —w|| : w € yNB,0z+ (1 —0)w € B, Vo € [0,1]},

¢ ={z € B: zis linearly connected to 7, dist(z,7) < e}.
We will prove the following result.
Theorem 4.1. There exists ¢g > 0 depending of Cy, dy and ny such
that for any different periodic rays 31,52 € G(T') we have

e—B(+dg)T

€ ege—B(+d2)T
o5 nes = 0.
Proof. Choose €y = min{5%-, 4%00}' Let 4, = 4%(t) € G(T), k =1,2, be

two different periodic rays with configurations «j having lengths py,
respectively. The rays below are parametrised by the length ¢ > 0. Let
Yk (t) have periods T, < T, k = 1,2 and let oy = (iy, ..., 1p, ). Assume
that B(14+dy)T B(14+dy)T
€oe 2 €pe” 2
Ok} ney # 0. (4.3)

Then theore exist points py = (zx, &) € Bn Y, k= 1,2, and p =
(y,€) € B such that ||p — pi|| < eoe™PIH+9)T k=12 and

(o) = (z1(0),&(0)) = (1 —0)pr +ope B, 0 €[0,1], k=1,2.

Assume that x; lies on the segment connecting i, € aDipl and u;, €
0D;,, while x5 lies on the segment connecting w;, € dD;, and wj, €
0Dj,. If iy = ji, since oy # g, there exist iy, 4, € {1,...,7}, i # i,
such that the ray 4;(¢) issued from p; follows a configuration 3 =
(11, ey in_1,1n), 2 < n < p1, while the ray J,(t) issued form py follows
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a configuration By = (i1, ..., 9,1, m ). More precisely, i,, and i,, are the
first indices in the configurations i, f2, where we have difference. If
i1 # 71 we have configurations 5y = (i1,...), f2 = (j1,...). This case
can be covered by the same argument since we prove that 4, (¢) defined
below follows the configurations f; and [5.We omit the details.

Without loss of generality we may assume that 31, 82 have lengths
less or equal to py, that is n < p;. Indeed, if

51 = (alu "'705172.17 "'7in*17in>7 52 = (alv "'7a17i17 "'7Z.nflaim)7 n S P,
N—— N———

k times k times
we may cancel aq, ..., .
————
k times

For ¢ small enough the rays 4,(t), t > 0, issued from v(o) will
follow the configuration 3, with reflections on 9D;,,...,0D; , and the
ray C,(t), t > 0, issued from py(0) = (21(0), —£1(0)) € B follows a
configuration 3; = (ip,,...). For o small the n successive reflections of
Yo (t) belong to Douto, as well as the reflection of fa(t) on 9D;, . In
general, the rays 9, (t) are not periodic, so after successive reflexions
on dD;,,...,0D; they may have other reflexions or glancing points and
also they may escape to infinity.

Let 0 <t < dyT and assume that ¢,(v1(0)) € B for 0 < op <o <
o1 < 1 has the form (4.1). Therefore

Jounon)=ou(uro) = | [ 2 (6u(wr())do] < Coe f(ou)—un ()]

d
< Coe™ oy — pl| < min {3, 2}, (4.4)

where we have used (4.2). Let
w = max{o € [0,1] : 3,(¢) does not follow /3
with reflections on 0D;,, ...,0D;, which belong to Dyyt0

or Ci,(t) has not a reflection on dD;, which is in Doyt 0.}

For the rays 4, (t), C.(t) there are several cases.

(al). A,(t) follows a configuration ¢ = (iy,...,15), 2 < s < n, with
reflections on 0D;,, ...,0D;,_, (on 0D;, if s = 2) and tangency on 0D;_.

(a2). Au(t) follows a configuration ¢ = (iy,...,05-1,74), 2 < § <
n, ¢ # s with reflections on 0D;,, ...,0D;,_,, and reflection or tangency
on 9D;,.

(a3). A,(t) follows a configuration ¢ = (i1, ...,45-1), 2 < s < n, with
reflections on 0D;,, ...,0D;, ,. After reflection on 0D;_ , the ray 7,(t)
does not meet 9D and it goes to infinity.
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In the cases (al)-(a3) we have 51 = (i1, ..., is, ...).

(b1). A,(t) follows a configuration ¢ = (i1,...) with tangency on
aDil.

(b2). A,(t) follows a configuration ¢ = (iy,...), ¢ # 1, ¢ # p1 with
reflection or tangency on 0D, .

(b3). A, (t) does not meet dD and it goes to infinity.

(c1). A, (t) follows 3y, while {,(t) follows a configuration 51 = (i, , ...)
with tangency on 9D;, .

(¢2). A, (t) follows 3, while {,(t) follows a configuration ¢ = (ig,, ...), 1 #
p1, q1 # 41 with reflection or tangency on 9D, .

(¢3). A,(t) follows By, while {,(t) does not meet dD and it goes to
infinity.

We will show that the cases (al) - (¢3) lead to contradiction.

(al). Let 7, (¢) have a tangency at v;, € 9D;, x S¢~! for time t,,. The
rays 9, (t) with 0 < ¢ < w have reflections which belong to (0D;, X
ST N Dot o for ts, and t,, — t, as 0 — w. By continuity, we obtain
V;, € Doy o which yields a contradiction with the tangency of v;,.

(a2). Let 4,(t) have reflection at v;,_, € 9D, _, for time t,_; and
reflection or tangency at v;, € 9D;, for time t,. Let 4,(t) with 0 < o <
w have reflections at w;, , , € 0D;, , and w;, , € OD;, for times t;_; ,
and ts,, respectively. For o close to w by (4.2) we deduce that t,_;,
is close to ts_;. This implies t, > t;_1, for small 0. We fix 0 < 0 < w
with this property. Notice that

2d
tq S 8d1 S —1T1 S dgT
do
Similarly, t;, < dyT. There are two possibilities: (I). t;, < t,, (II).
tso > t,. In the case (I), we apply (4.4) with ¢t = t;,,00 = 0,01 = w
and obtain
o
I7(¢r. . (v1(w))) = wioll < 5
On the other hand, (¢, , (vi(w))) lies on the segment connecting v;__,
and v;,. Hence this point belongs to ch(lJ;., D;) and the above in-
equality implies a contradiction.
Passing to the case (II), first suppose that 4,(¢) has a reflection at
v;,. We apply (4.4) with t = t,,09 = 0,01 = w and deduce

Mo

17 (e, (01(0))) = vi, || = -

Since (¢, (v1(0))) lies on the segment connecting w,_;, and w; ,, we
obtain again a contradiction because v;, & ch({J;, D;). Now suppose

that 7,,(¢) has a tangency at v; . Then for sufficiently small € > 0 we
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have t;, > t, — € and v (5 (ty — €)) € B. Moreover, for small e

=7
we have dist (vq@ ch(U,z, Dj)> > . We repeat the above argument
applying (4.4) with t = t, — ¢, and obtain a contradiction.

(a3). We use the notations in (al) and (a2). For t > t;_; the
ray m(%,(t)) does not meet D and for t > t,_1 + ¢y > ts_1 we have
dist (7(3,(t)), D) > €1 > 0. Since t5_1, is close to t;,_y for o close to
w, we have ts, > ts_1, + do/2 > ts_1 + € choosing 0 < ¢y < %0 and o
sufficiently close to w. As above, we obtain t,, < dy7). Now we apply
(4.4) with t = t;,,00 = 0,01 = w and obtain

17 (6., (v1(0))) = 7 (et , (L2 (W) < Coe™T[[va(0) — va(w)].

Taking ¢ sufficiently close to w, the right hand side of the above in-
equality will be less than €; and we obtain a contradiction with

dist (7(3,(ts0)), D) > €1 > 0.

(b1). We repeat the argument of (al) by using the fact that the rays
Y, (t) with 0 < 0 < w have reflections which belong to (0D;, x S¥~1) N
Dout,O-

(b2). Let 4,(t) have a refection or tangency at v;, € dD;, for time
t, and let 4,(t), 0 < 0 < w have a refection at w;, , € 0D;, for time
ti,.o. Let gg(t) have reflection at w;, , € dD;, . For o sufficiently small,
we have t, < t;, ,. Indeed, if ¢, > t;, ,, then the ray m(%,(t)) for time
0 < t < t, lies in the complement R?\ D;,. This is impossible because
7(95(t)) has a reflection for t = t;, ,. We fix 0 < ¢ < w with this
property. Suppose that 7,(t) has a reflection at v;,. Applying (4.4)
with ¢ = t4,00 = 0,01 = w, we obtain ||71(7,(ty)) — v, || < m0/2. On
the other hand, 7(9,(t,)) belongs to the segment connecting w;, , and
w;, - which lies in ch({J,, D;) and we obtain a contradiction. In the
case, when 7,,(t) has a tangency at v;, we consider a point 7, (t,—¢) € B
with sufficiently small € > 0 and ¢, — € < ¢;, ,. For small € we will have
dist (w(%(tq —€)), ch(Ujzq Dj)) > 20 We apply (4.4) with t =t, — €
and one obtains again a contradiction.

(b3). We use the fact that 4,(t), 0 < 0 < w, has a refection on 9D;,
and repeat the argument of (a3).

(c1). The rays (,(t), 0 < 0 < w, have reflections which belong to
(0D, x ST 1) N Doyt o and we are in the situation treated in (al). We
repeat the argument of (al) to obtain a contradiction.

(c¢2). This case is similar to (b2) and can be treated by the same
argument. We omit the details.
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(c3). This case is similar to the cases (a3) and (b3) and can be
covered by a similar argument. We omit the details.

Finally, notice that by continuity the reflections of the ray 4,(¢) on
0D;,,...,0D;, and that of fw(t) on 9D;, are in Doy -

Combining the above cases, we deduce that the existence of 0 <
w < 1 with the above property is impossible. Thus we conclude that
the ray 4,(t) issued from p follows the configuration ;. We repeat the
above argument for the periodic ray 4»(t) issued from p, and deduce
that 4,(t) follows the configuration Sy. Since 1 # [fo, this implies a
contradiction with the assumption (4.3). O

Corollary 4.1. Let 51, by be two periodic primitive rays with periods
Ty <T, k=1,2, passing through points py, = (z,&) € B,k =1,2. Let
(x,vx) be the outgoing representative of py. The we have

HUl — UQH 2 6067'8(1+d2)T. (45)
If x ¢ 0D, we take (x,&) as outgoing representative.
Proof. If x ¢ 0D, the statement is a trivial consequence of Theorem

4.1. If x € 9D, consider points y;, € 7(6;) in R\ D with |y, — z| =
n < min{l, %}, Assume that

H'Ul — ’U2H < 606_’8(1+d2)T.

Then |ly1 — yo|| = 2nsin &, where ¢ is the angle between the directions
v1 € ST and v, € S, Clearly,

|1 — vs]|? = 2(1 — cosp) = 4sin? %

For the points py = (yk, vx) € B we deduce
lp1 = p2ll < V14 n2[lvr — vl < €0/ 1 + e PUHERIT,
and for p = % € B, this implies
lp = pill < eoe P+ k=1,2.

Applying Theorem 4.1, we obtain a contradiction. U

5. OPEN PROBLEM

The statement of Theorem 4.1 is true for obstacles satisfying (1.1).
To apply a perturbation arguments it is important to know that for
every ¥ € G(T) with T' > Ty and = € 7w(§) N 0D there exist a >
1, Ty > 1 and a neighbourhood

B(z,e™") ={y€9D: |z —yl| <™}
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such that

V¢ e G(T)\ 7, Blz,e*")n¢=0. (5.1)
In general this is not true since there are different periodic rays passing
through a point # € D with different directions (see [PS17, Section
2.1] for examples). On the other hand, in [PS17, Theorem 6.2.3] it
was established that for generic obstacles for every x € 9D there exists
at most one direction ¢ € S¥1 (up to symmetry with respect to the
normal to dD at z) such that (z,&) could generate a periodic ray.
The reader may consult [PS17, Section 6.2]) for the precise definition
of generic obstacles. Since there are only finite number periodic rays
with period T', for generic obstacles every point & € 0D has a suitably
small neighbourhood with the property mentioned above. However,
the size of these neighbourhoods could be extremely small and their
dependence of T is unknown. We conjecture that there exist a >
1, Ty > 1, such that for generic obstacles for all ¢ € G(T')\7, T > Ty the
property (5.1) holds. For metrics on compact Riemannian manifolds
with negative curvature a relation similar to (5.1) has been proved in
[Sch20, Proposition 4]) without a generic assumption.
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